Maximization of the modelisation error ratio for neural predictive coding

نویسندگان

  • Mohamed Chetouani
  • Bruno Gas
  • Jean-Luc Zarader
چکیده

In this paper, we introduce a model for Discrimant Feature Extraction (DFE): the Neural Predictive Coding (NPC). It is an extension of the Linear Predictive Coding (LPC). The Modelisation Error Ratio (MER), a discriminant criterion adapted for predictive models, is introduced. We propose a theoretical validation of the discriminant properties of the MER. The experimental validation consists on phoneme recognition task. The phonemes are extracted from the Darpa-Timit speech database. The performances are compared with traditional methods: LPC, MFCC, PLP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی کنترل کننده پیش بین سیستم بویلر- توربین

A nonlinear model predictive control (NMPC) algorithm based on neural network is designed for boiler- turbine system. The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation range, tight operating constraints on control move and strong coupling among variables. The nonlinear system is identified by MLP neural network and neur...

متن کامل

ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی

Introduction: Meta-heuristic and combined algorithms have a great capability in modelling medical decision making. This study used neural networks in order to predict Type 2 Diabetes (T2D) among high risk individuals. Methods: This study was   an applied research. Data from 545 individuals (diabetic and non-diabetic), in Diabetes Clinic of Hamedan University of Medical Sciences, we...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

Efficient Neural Codes That Minimize Lp Reconstruction Error

The efficient coding hypothesis assumes that biological sensory systems use neural codes that are optimized to best possibly represent the stimuli that occur in their environment. Most common models use information-theoretic measures, whereas alternative formulations propose incorporating downstream decoding performance. Here we provide a systematic evaluation of different optimality criteria u...

متن کامل

A Low Complexity Forward Error Correction for PAPR reduction in OFDM Systems

In this paper, a Peak to Average Power Ratio (PAPR) reduction technique in Orthogonal Frequency Division Multiplexing (OFDM) systems is proposed. This technique uses error correction capability of channel coding to reduce the PAPR.The coded bits at the input of OFDM modulator are separated into two groups of the Most Significant Bits (MSB) and the LeastSignificant Bits (LSB). The bits are mappe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003